vb6 math code |
deadline online |
how to find roots |
numerical methods |
Newton method |
bisection method |
symbolic derivation |
plot graphs |
support center |
' Visual Basic 6 module '-------------------------- Math.bas --------------------------- ' Math expression parser that supports +, -, *, /, ^ (power), ' @ (logarithm), functions (exp, ln, sin, cos, tan, asin, acos, ' atan, sinh, cosh, tanh, int, frac, abs, sqrt), brackets ' Validate expression syntax, evaluate functions, derive functions ' Find roots using bisection method and Newton method '-------------------------- Math.bas --------------------------- ' Copyright Ionut Alex. Chitu, http://deadline.3x.ro ' ' Public functions: ' Function Error_Message(ByVal N As Integer) As String ' ' N = Code number ' Returns the associated error message ' ' Sub Check_Syntax(ByVal S As String, ByVal WithX as Boolean, ' ByRef Function_Error As Integer, ByRef i1 As Integer) ' ' S = function text ' WithX = can contain x variable? ' Function_Error = error code, 0=no error ' i1 = position in function text of the error ' ' Function Evaluate(ByVal S As String, ByVal x As Double, ' ByRef Function_Error As Integer) As Double ' ' S = function text ' x = value of the variable ' Function_Error = error code, 0=no error ' Returns the result of evaluation ' ' Function Derive (ByVal S As String, ByVal X As Double, ' ByRef Function_Error As Integer) As Double ' ' S = function text ' X = value of the variable ' Function_Error = error code, 0=no error ' Returns the result of numerical derivative ' ' Function Find_root_Newton(ByVal S As String, ByVal x0 As Double, _ ' ByVal eps As Double, ByRef FErr As Integer) As Double ' ' S = function text ' x0 = estimation of the root ' eps = precision of the root ' FErr = error code, 0=no error ' Returns the root close to x0 ' ' Function Find_root_bisection(ByVal S As String, ByVal a As Double, _ ' ByVal b As Double, ByVal eps As Double, _ ' ByRef Err As Integer) As Double ' ' S = function text ' a, b = interval where to search the root ' eps = precision of the root ' Err = (out) error code, 0=no error ' Returns a root that lies in [a, b] ' ' ' Example (copy-paste this code in a form load event in VB6): ' Dim fun as String, Err as Integer, pos as Integer ' Dim x as Double, y as Double ' fun="sin(x)+2*cos(x^2)" ' x=0 ' Check_Syntax fun, True, Err, pos ' If Err=0 then ' y=Evaluate(fun, x, Err) ' If Err=0 then ' MsgBox "f(" & CStr(x) & ")=" & CStr(y), vbInformation, fun ' Else ' MsgBox Error_Message(Err) ' End If ' Else ' MsgBox Error_Message(Err) ' End If ' '------------------------------------------------------------------- Option Explicit 'always use this option in vb Private Const Pi As Double = 3.14159265358979 Private Const e As Double = 2.71828182845905 Private argX As String Private Const evNumber = 1 Private Const evConstant = 2 Private Const evFunction = 5 Private Const evLeftBracket = 6 Private Const evRightBracket = 7 Private Const evOperand = 8 Private Const evElse = 16 Public Function Error_Message(n As Integer) As String Select Case n Case 0 Error_Message = "No error !" Case 1 Error_Message = "Error evaluating power function." Case 2 Error_Message = "Error evaluating logarithm. The argument must be > 0." Case 3 Error_Message = "Error evaluating tangent." Case 4 Error_Message = "Error evaluating square root. The argument must be >= 0." Case 5 Error_Message = "Error evaluating arcsine. The argument must be in [-1, 1]." Case 6 Error_Message = "Error evaluating arccosine. The argument must be in [-1, 1]." Case 7 Error_Message = "Division by zero." Case 11 Error_Message = "Unexpected end of parenthesis." Case 12 Error_Message = "Operators must be followed by number, constant, function." Case 13 Error_Message = "Function must be followed by parenthesis." Case 14 Error_Message = "An error occured in evaluation" Case 15 Error_Message = "Expression expected." Case 16 Error_Message = "Unknown function." Case 17 Error_Message = "Enter the value for which you want to evaluate the function." Case 18 Error_Message = "An error occured in evaluation" End Select End Function Private Function IsNum(ByVal s As String) As Boolean IsNum = IsNumeric(s) Or (s = ".") Or (s = ",") End Function Private Function Lexical_Unit(ByVal c As String) As Integer c = LCase$(c) If IsNum(c) Then Lexical_Unit = evNumber Else Select Case c Case argX, "e", "pi" Lexical_Unit = evConstant Case "ln", "abs", "exp", "sqrt", "int", "frac", _ "sin", "cos", "tan", "asin", "acos", "atan", _ "sinh", "cosh", "tanh" Lexical_Unit = evFunction Case "(" Lexical_Unit = evLeftBracket Case ")" Lexical_Unit = evRightBracket Case "+", "-", "*", "/", "^", "@" Lexical_Unit = evOperand Case Else Lexical_Unit = evElse End Select End If End Function Public Sub Next_Token(ByVal S As String, ByVal k As Integer, _ ByRef i1 As Integer, ByRef i2 As Integer) Dim s1 As String, s2 As String Dim other_token As Boolean Do While Mid$(S, k, 1) = " " k = k + 1 Loop i1 = k s1 = LCase$(Mid$(S, k, 1)) Do s2 = LCase$(Mid$(S, k + 1, 1)) other_token = (s1 <> s2) And Not (IsNum(s1) And IsNum(s2)) And _ Not ((s1 >= "a") And (s1 <= "z") And (s2 >= "a") And (s2 <= "z")) k = k + 1 s1 = s2 Loop Until other_token Or ((s1 = "(") And (s2 = "(")) Or ((s1 = ")") And (s2 = ")")) i2 = k - 1 End Sub Public Sub Check_Syntax(ByVal S As String, ByVal WithX As Boolean, _ ByRef Function_Error As Integer, ByRef i1 As Integer) Dim one As Integer, two As Integer, brackets As Integer Dim k As Integer, i2 As Integer, Si As String, Sk As String i1 = 2 i2 = 1 argX = IIf(WithX, "x", "") Function_Error = IIf(Trim(S) = "", 17, 0) If Function_Error = 17 Then Exit Sub S = "(" + S + ")" Si = "(" k = i2 + 1 one = 6 ' Lexical_Unit ("(") brackets = 1 Do While k <= Len(S) Next_Token S, k, i1, i2 Sk = Mid$(S, i1, i2 - i1 + 1) k = i2 + 1 two = Lexical_Unit(Sk) If two = 16 Then Function_Error = 16 Exit Sub End If Select Case Sk Case "(": brackets = brackets + 1 Case ")": brackets = brackets - 1 End Select If brackets < 0 Then Function_Error = 11 Exit Sub End If Select Case one Case evNumber If Not ((two = evConstant) Or (two = evLeftBracket) Or _ (two = evRightBracket) Or (two = evOperand)) Then Function_Error = 12 Case evConstant If Not ((two = evLeftBracket) Or (two = evRightBracket) Or (two = evOperand)) Then Function_Error = 12 Case evFunction If (two <> evLeftBracket) Then Function_Error = 13 Case evLeftBracket If (two = evRightBracket) Or ((two = evOperand) And (Sk <> "-")) Then Function_Error = 14 Case evRightBracket If (two <> evOperand) And (two <> evRightBracket) Then Function_Error = 15 Case evOperand If (two = evRightBracket) Or (two = evOperand) Then Function_Error = 14 Case evElse Function_Error = 16 End Select If Function_Error > 0 Then Exit Sub Si = Sk one = two Loop If brackets <> 0 Then Function_Error = 11 End Sub Private Function Priority(ByVal c As String) As Integer Dim P As Integer c = Left$(c, 1) Select Case c Case "(", ")": P = 0 'Priority 0 : brackets Case "+", "-": P = 1 'Priority 1 : aditive operators Case "*", "/": P = 2 'Priority 2 : multiplicative operators Case "^", "@": P = 3 'Priority 3 : exponential operators (a @ b -> log(a), base=b) Case "a" To "z", "A" To "Z": P = 4 'Priority 4 : math functions, constants End Select Priority = P End Function Public Function Evaluate(ByVal S As String, ByVal x As Double, _ ByRef Function_Error As Integer) As Double ' parse expression and evaluate function On Error GoTo Overflow Dim opd(200) As Double, op(200) As String Dim top1 As Integer, top2 As Integer, i As Integer, k As Integer Dim value As Double, x1 As Double, x2 As Double Dim i1 As Integer, i2 As Integer, Si As String, Sk As String, S0 As String Function_Error = 0 argX = "x" top1 = 0 top2 = 1 op(top2) = "(" S = S + ")" i = 1 Si = "(" Do While (i <= Len(S)) And (top2 > 0) Next_Token S, i, i1, i2 Sk = Si Si = Mid$(S, i1, i2 - i1 + 1) i = i2 + 1 If IsNum(Si) Then top1 = top1 + 1 opd(top1) = Val(Replace$(Si, ",", ".")) value = opd(top1) Else Select Case LCase$(Si) Case "(": top2 = top2 + 1: op(top2) = "(" Case argX, "pi", "e": top1 = top1 + 1 S0 = LCase$(Si) Select Case S0 Case argX: opd(top1) = x Case "pi": opd(top1) = Pi Case "e": opd(top1) = e End Select If IsNum(Sk) Then top2 = top2 + 1 op(top2) = "*" End If Case Else Do While (top2 > 0) And (op(top2) <> "(") And (op(top2) <> ")") _ And (Priority(op(top2)) >= Priority(Si)) If top1 >= 2 Then x1 = opd(top1 - 1) x2 = opd(top1) Select Case LCase$(op(top2)) Case "+": value = x1 + x2 Case "-": value = x1 - x2 Case "~": value = -x2 'unary minus Case "*": value = x1 * x2 Case "/": If x2 <> 0 Then value = x1 / x2 Else: Function_Error = 7: Evaluate = 0: Exit Function End If Case "^": If ((x1 < 0) And (x2 <> Int(x2)) Or _ ((x1 = 0) And (x2 = 0))) Then Function_Error = 1: Evaluate = 0: Exit Function Else: value = x1 ^ x2 End If Case "@": 'logarithm If (x1 > 0) And (x2 > 0) And (x2 <> 1) Then value = Log(x1) / Log(x2) Else If x2 = 1 Then value = Log(x1) Else: Function_Error = 2: Evaluate = 0: Exit Function End If End If Case "sin": value = Sin(x2) Case "cos": value = Cos(x2) Case "tan": If Cos(x2) <> 0 Then value = Tan(x2) Else: Function_Error = 3: Evaluate = 0: Exit Function End If Case "asin": If (x2 > -1) And (x2 < 1) Then value = Atn(x2 / Sqr(1 - x2 * x2)) ElseIf x2 = -1 Then value = -Pi / 2 ElseIf x2 = 1 Then value = Pi / 2 Else: Function_Error = 5: Evaluate = 0: Exit Function End If Case "acos": If (x2 > 0) And (x2 <= 1) Then value = Atn(Sqr(1 - x2 * x2) / x2) ElseIf (x2 < 0) And (x2 >= -1) Then value = Atn(Sqr(1 - x2 * x2) / x2) + Pi ElseIf x2 = 0 Then value = Pi / 2 Else: Function_Error = 6: Evaluate = 0: Exit Function End If Case "atan": value = Atn(x2) Case "sinh": value = (Exp(x2) - Exp(-x2)) * 0.5 Case "cosh": value = (Exp(x2) + Exp(-x2)) * 0.5 Case "tanh": value = (Exp(x2) - Exp(-x2)) / (Exp(x2) + Exp(-x2)) Case "ln": If x2 > 0 Then value = Log(x2) Else: Function_Error = 2: Evaluate = 0: Exit Function End If Case "exp": value = Exp(x2) Case "abs": value = Abs(x2) Case "sqrt": If x2 >= 0 Then value = Sqr(x2) Else: Function_Error = 4: Evaluate = 0: Exit Function End If Case "int": value = Int(x2) Case "frac": value = x2 - Int(x2) End Select If ((LCase$(Mid$(op(top2), 1, 1)) < "a") Or _ (LCase$(Mid$(op(top2), 1, 1)) > argX)) _ And (op(top2) <> "~") Then top1 = top1 - 1 opd(top1) = value top2 = top2 - 1 Loop If top2 > 0 Then If (op(top2) <> "(") Or (Si <> ")") Then top2 = top2 + 1 op(top2) = IIf((Sk = "(") And (Si = "-"), "~", Si) Else top2 = top2 - 1 End If End If End Select End If Loop Evaluate = opd(1) Exit Function Overflow: Function_Error = 18 'overflow MsgBox "overflow" End Function Public Function Derive (ByVal S As String, ByVal x As Double, _ ByRef Function_Error As Integer) As Double ' ================================================================ ' f(x-2h)-8f(x-h)+8f(x+h)-f(x+2h) ' f'(x) = ------------------------------- (derivative formula) ' 12 h ' ================================================================= Dim v1 As Double, v2 As Double, v3 As Double, v4 As Double Dim FErr As Integer Const h as Double = 0.000456 Derive = 0 Function_Error = 1 v1 = Evaluate(S, x - 2 * h, FErr) If FErr <> 0 Then Exit Function v2 = Evaluate(S, x - h, FErr) If FErr <> 0 Then Exit Function v3 = Evaluate(S, x + h, FErr) If FErr <> 0 Then Exit Function v4 = Evaluate(S, x + 2 * h, FErr) If FErr <> 0 Then Exit Function Function_Error = 0 Derive = (v1 - 8 * v2 + 8 * v3 - v4) / (12 * h) End Function Function Find_root_Newton(ByVal S As String, ByVal x0 As Double, _ ByVal eps As Double, FErr As Integer) As Double ' solve equations using Newton method On Error Resume Next Dim x1 As Double, v1 As Double, v2 As Double Dim FErr1 As Integer, FErr2 As Integer Dim steps As Integer FErr = 0 x1 = x0 steps = 0 Do x0 = x1 v1 = Evaluate(S, x0, FErr1) v2 = Derive(S, x0, FErr2) If (FErr1 * FErr2 > 0) Or (v2 = 0) Then Find_root_Newton = 0 FErr = 1 Exit Function Else x1 = x0 - v1 / v2 End If steps = steps + 1 Loop Until (Abs(x1 - x0) < eps) Or (steps = 100) If Evaluate(S, x1, FErr1) < eps Then Find_root_Newton = x1 Else Find_root_Newton = 0 FErr = 2 End If End Function Function Find_root_bisection(ByVal S As String, ByVal a As Double, _ ByVal b As Double, ByVal eps As Double, _ ByRef Err As Integer) As Double ' solve equations using bisection method On Error Resume Next Dim ya As Double, yc As Double, c As Double Dim steps As Integer, FErr As Integer Err = 0 Do c = (a + b) / 2 ya = Evaluate(S, a, FErr) yc = Evaluate(S, c, FErr) If ya = 0 Then Find_root_bisection = a Exit Function ElseIf yc = 0 Then Find_root_bisection = c Exit Function End If If ya * yc < 0 Then b = c Else a = c End If Loop Until (Abs(b - a) < eps) Find_root_bisection = c End FunctionYou can download the VB6 project and use it as a template.
Related: